Main Page

From Jonathan D. Lettvin

Jump to: navigation, search

Contents

Jonathan D. Lettvin
home page

Professional
Info
Samples of
My Work
Preferred
Languages
Preferred
Platforms
Antivirus
Patents
Neural
Patents
Social
Media
Contact
Info
resumé
LinkedIn
github repos
Writing Samples
Python
C++
Unix
linux
5559960
5826012
7796173
7952626
google+
facebook
email
wikipedia

Personal Project

My personal goal is to answer Cajal's three questions about nervous systems (ISBN 0-19-507401-7 Histology of the Nervous System): "Practitioners will only be able to claim that a valid explanation of a histological observation has been provided if three questions can be answered satisfactorily: what is the functional role of the arrangement in the animal; what mechanisms underlie this function; and what sequence of chemical and mechanical events during evolution and development gave rise to these mechanisms." Santiago Ramón y Cajal

Principally, I work on the first two questions: I model observed groups of shaped neurons. I model observed signal propagation and expression. I replicate observed functional roles. As a personal Python OpenCV Big Data project I research and develop neuron-shaped mathematical transforms, as discrete 3D convolution/correlation kernels achieving far sub-pixel image feature detection, using methods learned during my MIT Physics training and early experience in a wet neuroscience lab. ignore old page

Quora posting on Brain Information characteristics

I am an amateur scientist (BS Physics) without official credentials in neuroscience. Yet I spent my entire grammar school through high school years apprenticing in a well-known wet neuroscience lab, so review the literature I reference if you do not believe what I say here. The views expressed here are entirely my own except where I make reference.

Let's say that we take 100% brain use seriously. All synapses of all neurons are activated at the same time. On the face of it, an undifferentiated global pulse in the brain has no value at all, informationally similar to no activity at all. So 100% must mean something else.

There must be patterns of activity. A pattern means a volume of activity next to a volume of inactivity. A naive view would choose 50%/50% active/inactive as 100% use of the brain. However, this fails horribly. Consider that an image filled with white noise is essentially as useful as no activity at all.

Then, what makes activity informationally rich? I propose that one should expect something like a volume diffraction pattern expressing activity identifying sharp boundaries between adjacent fields of undifferentiated inactivity. The ability for these boundaries to migrate as activity surfaces through a field of inactivity seems like a viable starting hypothesis for making best use of neural organs. So, if this hypothesis were reasonable, and we wanted to be able to move an activity surface over 10 times its surface depth as wiggle-room, that would already cut down useful activity to no more than 1/10th of the cells in the brain. But this presupposes that one has a laminated layer-cake of activity as best use. This makes no sense either since there is little informational richness in moving layers up and down relative to each other. So, a more informationally appropriate use would be bubbles of activity where the surface of activity surrounds a volume of inactivity and which bubble is sufficiently distant from other bubbles. Still using the factor of 10 suggested before, and a volume containing bubbles of radius 10 and kept a distance 10 away from nearest neighbors, the unit activity surface is 4*pi*r*r and the volume is 2*4*pi*r*r*r/3 for a active/total population ratio of 1/60th of the cells in the brain. So, for any more than 1 out of every 60 cells to be active would support this second approximation of informationally useful activity. But this, also, is inappropriate because a box full of same size bubbles is still informationally poor. This is where we come back to the idea of "3D diffraction patterns". The original holograms had a peculiar zebra-stripe appearance where shining a reference laser at an angle caused a 3D image of a scene to be visible. These holograms were 2D diffraction patterns capable of storing 3D information. My third hypothesis is that 3D diffraction patterns supported by neural organs are capable of reproducing 3D images with acceptable time-transitions. Such a scheme would require the wiggle-room to be larger in places, such that the likely population of active neurons could be cut possible by an order of magnitude. So, now we are down to 1 in every 600-1000 brain cells active at any given time.

My guess is that more "intelligent" people are the ones capable of performing more transforms on these activity surfaces to achieve a more varied outcome while less "intelligent" people use a more limited set of transforms. But this is rank speculation with no foundation in existing literature. I am conducting experiments to collect anecdotal evidence that the hypothesis is plausible. The experiments involve rote training to install alternative dissimilar reflex pathways for people presented with situations in which their prior reflexes were monotonous.

Sherrington, who won the Nobel Prize for his work in neuroscience proposed that there is no single neuron unaffected by every other neuron in the nervous system. All activity is as a contributing member of a community and all neurons contribute. Since all cells are autonomous cells, they perform normal cellular functions as well as providing signals to distant cells when necessary and sufficient conditions are met. The notion of using only 10% is difficult to understand. "They also serve who only stand and wait" (Churchill).

The vast majority (perhaps 97% or more) of axons are fully insulated without nodes of Ranvier (no access to external ions needed for Hodgkin&Huxley membrane pulse propagation) and therefore not carriers of membrane pulses. To see how the ubiquitous "unmyelinated" axons are insulated, review the image in Grays Anatomy 35th British Edition, W.B. Saunders Company, Philadelphia, 1973, pg 782. To justify the 97%, see "Functional properties of regenerated optic axons terminating in the primary olfactory cortex", Scalia, Brain Research, 685 (1995) 187-197 (speculation: Lissauer's tract in the spinal cord is vanishingly small yet may contain more axons than the entire rest of the spinal cord). The reason investigators prefer experiments on myelinated axons is that they are larger and easier to investigate; which means only 3% of axons generate the "pulses" used for the modern practice of brain mapping. Measuring gross signals in the smaller axons is published in the Gasser and Erlanger 1944 Nobel lectures. Measuring them individually is published in "What the Frog's Eye Tells the Frog's Brain", Lettvin, Proceedings of the IRE, November 1959, pg 1940-1951.

From what I have been able to interpret, a lot of the activity of the brain is the attempt to inhibit activity (bulbar inhibitory system). The inhibitory system is extraordinarily powerful with much global general inhibition preventing excitations and more focal inhibitions constraining excitations in more specific ways. Strychnine, apparently, increases activity in the central nervous system. An animal with strychnine poisoning was relieved of seizures by stimulating the bulbar inhibitory system (private communication with J. Y. Lettvin).

It gets even more interesting when you consider that instead of the estimated 1e11 neurons it is reasonable to consider information to be expressed over the estimated 1e15 synapses. My "activity surfaces" could be as thin as two synapses deep, separating a featureless "more" field from a featureless "less" field. That is on the order of between 0.1micron to 1.0 micron according to the http://book.bionumbers.org/how-big-is-a-synapse/ web page.

All this is purely my own personal interpretation of informational necessities in nervous systems. It may be wholly unsupportable when reviewed by a professional, but then again, it may not. Errors in factual material are my own and I invite clear non-ad-hominem corrections.

I welcome feedback and discussion on this material.

Personal Links

Personal links
Lettvin Server Internal Main Multicast Retina Private Moiety Wave Poetry Aneuran BBK
Other Services Poetry LinkedIn google+ facebook twitter monster github stackoverflow evernote WTF
Action Places godaddy amazon BIDMC DUA airpair bitbucket eye bitbucket auction bookmarks GTFOOD
Latest Off Color Synchronic Seeing Stars Many Points LTFS Approximations Choice WhiteBody Vision Primitives JDL:The Art Of Seeing
Frequent personal links
gmail cyberspacecyrano calendar LinkedIn facebook
FB Sharon twitter poetry github howtogeek
caremark Schwab google+ Art Vision
Math Aneuran BBK WIL DayNightLamp
gravatar Felix Geriatrix Social Life of Neurons Reflex and Reason

Orienteering the visual isoclines with gun and camera

Philosophy

The unknown only becomes known by one who makes mistakes. For example, all advances in science are achieved by violating inviolable rules, whether intentionally or not. It is a common theme to be found in the nobel lectures by the prize winners (http://www.nobelprize.org). As I like to say "You know the value of your mistake by the size of the army mounted against you".

(A quote from Jerry Lettvin making the same point)
"If it does not change everything, why waste your time doing the study?"

(A quote from Murray Bookchin making the same point)
"I have always tried to look beyond ideas that people freeze into dogmas".

A poem translated by Jerry Lettvin from Christiaan Morgenstern:
(I have had similar experiences.)

Σ Ξ MAN MET A Π MAN

After many "if"s and "but"s,
emendations, notes, and cuts,

they bring their theory, complete,
to lay, for Science, at his feet.

But Science, sad to say it, he
seldom heeds the laity

abstractedly he flips his hand,
mutters "metaphysic" and

bends himself again to start
another curve on another chart.

"Come," says Pitts, "his line is laid;
the only points he'll miss, we've made."

Critique of Ayn Rand

Ayn Rand says "A leaf cannot be all red and all green at the same time." This shows profound naiveté about perception suggesting philosophical naiveté. In the fall, a ginkgo tree has yellow leaves. Let's have two people observe. One views a leaf through a red frame. The other views it through a green frame. The leaf appears green to the one and red to the other. Color is relative. Point of view colors all things. A leaf is all red and all green at the same time. The rest of objectivism is erected upon similarly naive statements proposed as fact. Reality depends entirely on observers, their positions, their frames of mind, and their moment. Society depends on lightweight acceptance of perceived commonalities and differences.

--Jlettvin 17:30, 22 April 2013 (UTC)
Personal tools